
Lecture 5
Damping Ring Basics

Susanna Guiducci (INFN-LNF)
May 21, 2006

ILC Accelerator school



2

Outline

· Introduction
· Betatron motion
· Coupling
• Synchrotron motion
• Beam energy spread
• Beam emittance
· Radiation damping
· Intrabeam scattering
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Betatron Motion
Reference trajectory

s
ρ z

x

Mid-plane symmetry: magnetic field in the
horizontal plane is perpendicular to the plane

ρ(s) = local radius of curvature

K(s) = local focusing strength

Particles are kept on a nearly circular trajectory by bending and
focusing magnetic fields

The reference trajectory is the equilibrium closed orbit for a
particle of momentum p0. It is a sequence of straight lines and
circular arcs (in bending magnets)

Quadrupoles act as focusing systems which produce small betatron
oscillations around the reference trajectory
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Multipolar expansion of Magnetic fields

For two dimensional fields the transverse field
components Bx, By can be written as the Real and

Imaginary part of an analytic function

By + i Bx = f (z ) = u(x , y) + i v(x , y ) = ak ( x + i y )
k
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The analytic function can be expanded in multipolar series
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Multipolar expansion of Magnetic fields
B = 0

By (x , y ) + iBx ( x , y) = By
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Motion equation

The linearized betatron motion is governed by Hill’s
equation

x” + Kx(s) x = 0 where Kx= 1/ρ2 - (∂Bz/∂x) /Bρ

z” + Kz(s) z = 0 and Kz= (∂Bz/∂x) /Bρ

The focusing functions are periodic:

Kx,z(s+L) = Kx,z(s)
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Transfer matrices

Let y(s) =          be the “position vector”

y(s) = M(s|s0) y(s0)

where M(s|s0) is the betatron transfer matrix

The passage through a magnetic element can be
described by a 2x2 matrix, which transforms the

"position vector" of a particle before the element to
the position vector after it

y(s)
y’(s)
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cosφ sinφ/√|K|  K > 0 focusing quad

-√|K| sinφ  cosφ φ = s √|K|

coshφ sinhφ/√|K|  K < 0 defocusing quad
- √|K| sinhφ  coshφ

Solutions with constant K
y” + K (s) y = 0 ;    y = x or z

Y(s) = a cos(√Ks +b) K > 0 focusing quad

Y(s) = as + b K = 0 drift space

Y(s) = a cosh(√-Ks +b) K < 0 defocusing quad

Mx=

Mz=

1 L

0 1
K = 0 drift space of length L
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Quadrupole

Strenght Kx= (∂Bz/∂x) /Bρ

Kz= -(∂Bz/∂x) /Bρ
Field

Bx = (∂Bz/∂x)⋅z

Bz = (∂Bz/∂x)⋅x

A quadrupole is always focusing
in one plane and defocusing in

the other one
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One turn matrix

A ring is a sequence of N elements, and it can be
represented by the product of the matrices of each element

M = MN⋅ MN-1⋅… M3⋅ M2⋅ M1

The determinant of the matrices is: det(Mi)=1

Periodicity condition: M(s1+L|s1) = M(s1)

Map of m turns: M(s1)m
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One turn matrix
The one turn matrix can be written as:

! 

M =
cos" +# sin" $ sin"

%& sin" cos" %# sin"

' 
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The map of n turns is:  Mn = Icos(nφ) +Jsin(nφ)
The condition for the stability of the betatron

motion is:

|trace M|=2cosφ < 2

α, β and γ are the Twiss parameters and φ is the
betatron phase advance

Holds for
any periodic

cell
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One turn matrix
The transfer matrix from s1 to s2 can be written as:

! 

M(s2 s1) =

"2 /"1 (cos# +$1sin#) "1"2 sin#
%(1+$1$2)sin# + ($1 %$2)cos#
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And can be used to propagate the twiss functions:
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General solution of Hill’s equation

Kx,z(s+L) = Kx,z(s) y” + K (s) y = 0 ;    y = x or z

! 

y(s) = A "(s) cos(#(s) + $)

This is the definition of the betatron oscillations and of the
betatron function, which satisfies the following equation:

! 
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""+K" #
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" '
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Taking the first derivative:

! 

y'(s) =
A

"(s)
#(s)cos($(s) + %) + sin($(s) + %)[ ]

! 

"(s) = #$ '(s) /2  ;  %(s) =
1+"(s)

2

$(s)
  ;  &(s) =

1

$(s)
' ds

where A and δ are integration constants
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Twiss Functions

Since there are no friction terms in Hill's
equation, the "energy" of the betatron
oscillations is conserved during the motion

! 

" =
1

#
y
2 + ($y + #y')2[ ] = %y 2 + 2$yy '+#y'2

The area of the ellipse is πε , and it is constant along the ring

φ(s)      betatron phase advance
α(s), β(s), γ(s) Twiss functions

The trajectory of particle motion follows an ellipse described by
the Courant-Snyder invariant
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Twiss Functions
It is important to stress that the Twiss functions (also
called optical functions) are periodic, their value depends
only on the coordinate s along the ring, while the
coordinates y(s) and y'(s) do not repeat after one revolution
s = s + L  ,  L = ring circumference

! 

Qy =
"y (L)

2#
=
1

2#

ds

$y (s)s

s+L

%

If the storage ring is made of a number of identical cells,
then the optical functions have the periodicity of the cells

The number of betatron oscillations in a full
revolution is called the betatron tune:
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Dispersion function
A particle with a momentum deviation  Δp = p-p0 satisfies:

! 

x"+K(s)x =
1

"

#p

p
0

The total deviation of the particle from the reference orbit is:

x(s) = xβ(s) + D(s)Δp/po

The particle with momentum deviation Δp/po performs a betatron
oscillation xβ with respect to an equilibrium orbit D(s) Δp/po

The dispersion function D(s) satisfies:

! 

D"+K(s)D =
1

"

With periodic boundary conditions
D(s+L) = D(s)  ;  D’(s+L)=D’(s)
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Momentum Compaction
The total path length for an off-momentum particle
differs from that for the on-momentum closed orbit by:

! 

"C =
x

#
$ ds =

D(s)

#
ds$

% 

& 
' 

( 

) 
* 
"p

p

The momentum compaction factor ac is defined by

! 

"c =
#C /C

#p / p
=
1

C

D(s)

$
ds% =

I
1

C

! 

I
1

=
D(s)

"
ds#

The αc parameter governs the  longitudinal motion in storage rings.
I1 is the first of the radiation integrals that will be introduced in the
following to describe the effects of synchrotron radiation emission
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Field errors and closed orbit
A small dipole field error produces a distortion of the reference

orbit. The perturbation is approximated by an angular kick δ
localized at the dipole center:

Particles now perform betatron oscillations around a new orbit, which
must be closed with the ring periodicity. In order to find the position

vector at the perturbation we solve the system

To get:

! 

" =
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B(s)ds$
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=
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Field errors and closed orbit

! 

y(s) =
1

2sin"Qy

#k $(s)$(s0) cos("Qy % &(s) %&(s0) )

The maxima occur at φκ = φ(sk)-φ(s0) = πQy+kπ and are given by:

The c.o. can be propagated along the ring:

When Q is integer the sin(πQy) term in y diverges and the
motion becomes unstable

First order resonance:  Q = n ;   n=integer

! 

y(s) = m
11
yc + m

12
y 'c

! 

yk =
1

2sin"Qy

# $k$(s0)
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Field errors and closed orbit
Dipole perturbations arise from:

δ = ΔBL/(Bρ)  field errors in bending magnets

KyLΔyq quadrupole alignement errors Δyq

The expectation value of the amplitude due to a random distribution
of dipole errors  is:

The amplitude of the closed orbit can be minimized by means of
a set of dipole correctors properly distributed along the ring
! 

y
2

=
"(s)

8sin
2 #Qy

" i$i
2

i

% =
"(s) "

8sin
2 #Qy

N $ 2

Due to the linear nature of the Hill’s equation the closed orbit of a
ring is the sum of the orbits due to a large number of small errors
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Gradient errors
Let us consider a small perturbation of the focusing strength K:

K=K0+ΔK with       K(s+L)=K(s)

The effect of a small focusing perturbation can be represented
by a "thin lens" matrix:

! 

1 0

"#Kl 1

The new one-turn transfer matrix is the product of the original
matrix and the thin lens

! 

cos"+# sin" $ sin"

%& sin" cos"%# sin"
'
1 0

%(Kl 1
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Gradient errors

Taking the trace of the matrix:

! 

cos "+ #"( ) = cos"$
1

2
%#Klsin"

Since:

! 

cos "+ #"( ) = cos#"cos"$ sin#"sin"

! 

"# =
1

2
$"Kl    and     "Q =

1

4%
$"Kl

To first order:

The result of gradient errors is a betatron tune shift, positive for a
focusing quadrupole and negative for a defocusing one

For a distributed gradient error the tune shift is:

! 

"Q =
1

4#
$"Kds%
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Chromaticity
The focusing functions in Hill’s equation depend on the momentum
deviation via the radius of curvature ρ

x” + Kx(s) x = 0 where Kx= 1/ρ2 - (∂Bz/∂x) /Bρ

z” + Kz(s) z = 0 and Kz= (∂Bz/∂x) /Bρ

K (Δp/p )≈ K(0)(1-Δp/p)

ΔKx ≈ -Kx Δp/p

ΔKz ≈ -Kz Δp/p

The dependence of the focusing
strength on the momentum deviation
Dp/p is called chromatic aberration

Using the formula for the gradient error we can calculate
the betatron tune shift due to the chromatic aberration
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Chromaticity
The chromaticity of a ring is defined as the derivative of the
tunes with respect to momentum deviation

! 

Cx =
"Qx

"#p p
    ;    Cz =

"Qz

"#p p

Since the focusing strength is weaker for higher energy
particles the betatron tune decreases and the chromaticity
due to quadrupoles is always negative
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Sextupole Chromaticity
Negative chromaticity can be the source of harmful

instabilities: most machines have their chromaticity corrected to
zero, or to slightly positive values, by means of sextupole magnets.

The field in a sextupole is:

The sextupole behaves as a quadrupole with a gradient proportional
to the radial particle displacement

 An off-momentum particle is displaced from the reference
trajectory by D(s)Δp/p and therefore experiences a gradient:
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Therefore the change in tune due to the sextupole is:
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Coupling
In the 4-dimensional phase space the matrix of an ideal
horizontally focusing quadrupole is block diagonal and can be
written as:

! 

M =
A
F

0

0 A
D

Where AF and AD are 2x2 matrices

! 

A
F

=
cos kl( ) sin kl( ) /k

"k sin kl( ) cos kl( )
  ;  A

D
=

cosh kl( ) sinh kl( ) /k

k sinh kl( ) cosh kl( )

If the quadrupole is rotated by an angle θ  with respect to the
horizontal symmetry plane, its matrix becomes:

! 

M
R

=
c
1
A
F

+ c
2
A
D

c
3
(A

F
" A

D
)

c
3
(A

F
" A

D
) c

2
A
F

+ c
1
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D
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1

= cos
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2
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c
3

= #sin" cos"
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Coupling
The rotated quadrupole matrix can be expressed in a more physical way as the

product of a rotation of an angle θ  by M and by a second rotation of -θ :

This matrix is not block diagonal as that of the ideal quadrupole. The motions of
the particle in the two planes are no more independent. A kick in one plane
excites betatron oscillations also in the other one and the motion is called
"coupled". In a coupled machine, the oscillation amplitude is continuously

transferred from the horizontal to the vertical plane and the other way around

For θ =45°  the quadrupole is called skew quadrupole and its matrix is

! 

M
skew

=
1

2

A
F

+ A
D

"A
F

+ A
D

"A
F

+ A
D

A
F

+ A
D

MR = R(θ) M R(-θ )
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Coupling
To describe the motion in a coupled machine we simplify the

equation of motion assuming sinusoidal approximation

 This can be done since the exchange of energy between the 2
planes is slow with respect to the betatron oscillation

! 

" " x +#
x

2
x = $kz  ;  " " z +#

z

2
z = $kx

Where: κx = Qx/R and κz = Qz/R are the betatron phase advances
assumed constant per unit length; R is the average ring radius

The coupling strength of the skew quadrupole, averaged over
the ring,  is then:
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Coupling
Let’s try solutions of the form of uncoupled oscillations with an
envelope term

! 

x = X(s)e
i" x s ;  z = Z(s)e

i" z s

For weak coupling conditions X and Z will be slowly varying
functions and we neglect X” and Z”

We are interested to the strongest coupling resonance that
occurs for Qx≈Qz so we put:

 κ ≅ κx ≅ κz ;   and δ = κx - κz = (Qx-Qz)/R

We get:

! 

" X =
ie

# i$s

2%
kZ  ;  " Z =

ie
#i$s

2%
kX
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Coupling

Solving the equations the general solution can be written:

A physical insight is obtained by taking the squares of the moduli
of amplitude terms which form the envelopes of the oscillations:
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Coupling
There is a sinusoidal exchange of energy between the x and z planes with
the interchange period:

And the total oscillation energy, given by the sum of the
squares of the amplitudes, is conserved
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Kick in the horizontal plane

At s=0 it is:

 Z=0

and Emax = |X|2

This gives:

When the beam is kicked in the H plane a vertical oscillation will start
growing under the condition that Emax = |X|2 + |Z|2

The coherent oscillations and the exchange of amplitude will be visible
to a pick-up in both planes
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Kick in the horizontal plane
This gives a direct method for measuring |C| by measuring the
interchange period T

The separation Δ of the uncoupled
tunes cannot be measured but can

be obtained from the above
equations:
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Minimum tune distance

Using κx=κ+δ/2, κz=κ-δ/2  the equations for x and z can be written as:

The motion is a combination of two normal modes with different
oscillation frequencies:

Q1 = R(κ+η/2) ; Q2 = R(κ+η/2)
! 

x = Ae
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Minimum tune distance
Measured tunes as a function of the distance of the uncoupled tunes

1.120000
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1.150000

1.160000

1.170000

1.180000
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When Δ is large the
measured tunes are
similar to the uncoupled
Qx and Qz

Approaching the
resonance (Δ=0) the two
tunes will show a minimum
approaching distance
which is a measure of the
coupling strength C.

This corresponds to full
coupling, when the 2 tunes
become undistinguishable
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Coupling Coefficient
An exact analysis with the use of the Hamiltonian formalism
and conjugate variables gives a rigorous result for the coupling

coefficient in an alternating gradient lattice:
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Synchrotron motion
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Synchrotron Radiation

• Emission of Synchrotron Radiation (SR) exerts a
strong influence on electron beam dynamics in storage
rings

• Emission of SR leads to damping of synchrotron and
betatron oscillations and determines the beam sizes

• At present energies, these effects strongly affect
the design of electron machines, while are negligible
for proton machines

• For the next proton collider LHC, due to its very high
energy, SR effects have to be taken into account

• In the following treatment we will refer to electrons
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Radiated Power

SR is the energy emitted by a relativistic particle in
motion on a circular trajectory

! 

P =
2

3

e
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$ 4% 4

&2
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e
2
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3

2"
C%E

2
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! 

C" = 8.85 #10$5GeV $3
m

SR is emitted on a broad frequency spectrum and in a
narrow cone of aperture ~1/γ with respect to the electron

velocity

The instantaneous rate of power emitted by SR  is:
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Energy Loss Per Turn

I2 is the second radiation integral
 It is useful to relate the radius of curvature ρ, the

bending magnet field B and the energy:

E [GeV] = .3 Bρ [Tm]

For an iso-magnetic lattice (uniform bending radius):

U
0
=

P

!c" ds =
C#

2$
E
4 ds

%2"

U
0
eV[ ] = 8.85 !104

E
4
GeV[ ]
" m[ ]

! 

U
0

=
C"

2#
E
4
I
2

! 

I
2

=
1

"2
# ds
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Energy loss per turn and related parameters
for various electron storage rings

E
 (GeV)

!
(m)

L
(m)

T0
(µs)

U0,dip*
(MeV)

Adone .51 5 105 .35 .001

DA"NE .51 1.4 98 .31 .004

PEP B LE 3.1 30.5 2200 13.6 .27

PEP B HE 9.0 165 2200 13.6 3.5

LEP 100. 3100 3 104 89 2855

E
 (GeV)

!
(m)

L
(m)

T0
(s)

U0,dip
(MeV)

LHC 7700 2568 3 104 89 .011

The same quantities for the next proton
storage ring

* dip = from dipoles, excluding contributions from wigglers
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Synchrotron Oscillations

eV

U
0

t
0 t

synchronous electron

T
0
/h

E
0
GeV[ ] =

.3

2!
Bds Tm[ ]

L

"

The energy lost by SR has to be replaced by means of the electric
field in the Radio Frequency (RF) cavities.

The synchronous particle travels on
the reference trajectory (closed
orbit of length L) with energy E0

and revolution period T0 = 1/f0 = L/c

 The RF frequency must be a multiple of the revolution frequency:

fRF = hf0

The synchronous particle arrives at the RF cavity at time t0 so that the
energy gained is equal to the energy U0 lost per turn by SR
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ε = 0, t = t0    Δe = eV(t0) = U0

ε > 0, t > t0     Δe = eV(t) < U0

ε < 0, t < t0     Δe = eV(t) > U0

Synchrotron Oscillations

! 

"T

T
0

=
"L

L
=#

$

E
0

The arrival time for an off-momentum particle is given by
the momentum compaction αc

The momentum compaction is generally positive

E = E0+ε

E = E0

αc = I1/L
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The particles oscillate in energy
and phase with respect to the
synchronous particle, which is at
the bunch center

Let ε = ΔE/E and τ = t - t0
In the longitudinal phase space ε, τ 
the motion is represented by a
point moving on an ellipse

Synchrotron Oscillations

The period of the synchrotron oscillation is typically many
turns, much longer than that of the betatron oscillation (a
fraction of a turn).

ε

τ
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τ = Δs/c > 0 is the time distance for an e- ahead of
the synchronous particle

d!

dt
= "#

$

E
0

On average in one turn:

For small oscillations we assume a linear RF voltage:

Synchrotron Oscillations

d!

dt
=
eV "( )#U !( )

T
0

( ) !!
00
VeUeV &+=

Assuming that changes in ε and τ occur slowly with
respect to T0:
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Synchrotron Oscillations
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Without damping the particle
moves along the ellipse

The energy gained by the cavity
is on average equal to U0.

As the derivative dU/dε  is
proportional to ε the energy loss
is larger than U0 for ε>0  and
smaller for ε<0.

Therefore the area of the ellipse decreases slowly and the
trajectory spirals toward the inside

The oscillation amplitude decreases proportionally to dU/dε

Damping of Synchrotron Oscillations
1 3 0.005 0.2 e

-4.000

0.000

4.000

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

ε

τ
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Damping of Synchrotron Oscillations

The rate of energy loss changes with energy because
• it is itself a function of energy
• the orbit deviates from the reference orbit and there may be a
change in path length

dU !( )

d!
=
1

c

2P
0

E
0

ds =
2U

0

E
0

"
and ! 

U "( ) =
1

c
Pdl#
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P = P
0
+
2P

0

E
0

"P is a function of E2 and B2
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Damping Time
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For separated function lattice D << 1:

Taking into account also the path lengthening the damping
coefficient is:

τε is the time in which the particle radiates all its energy

= I4/I2
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D =
D 1" 2n( ) # 3ds$

1 # 2ds$



50

Damping of Vertical Betatron Oscillations
Effect of energy loss due to photon

emission and energy gain in the RF cavity

After the RF cavity, since  z’ = p⊥/p,  it undergoes a variation :
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The damping decrement is
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z = A " cos(#(s) + #0)

$ z =
A

"
sin(#(s) + #0)

! 

A
2

= "z2 + 2#z $ z + % $ z 
2

The vertical oscillation is:

With amplitude A

The amplitude A varies by:
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Damping partition
In the horizontal plane the damping coefficient has an additional

term which accounts for the path length variation. In general:

! 

"
i
=

J
i
U
0

2E
0
T
0

i = x,z or ε and Ji are the damping partition numbers:
Jx = 1 - D    ;      Jz = 1 ;     Jε = 2 + D    ;     D = I4/I2

The sum of the damping rates for the three planes is a costant:

Jx  + Jz + Jε = 4

For damping in all planes simultaneously:
all Ji > 0  and hence  -2 < D < 1
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Radiation Damping Effects
• Equilibrium beam sizes
• Multi-cycle injection
• Damping rings
• Counteracts the beam instabilities
• Influence of S.R. Emission on Machine Design

– RF system
– vacuum system: heating and gas desorption
– radiation damage
– radiation background in collider experiments

• High Energy Storage Rings
– The radius of curvature is increased to keep the power of the

emitted radiation below an acceptable level  ρ  ∝ E2

• Low Energy Storage Rings
– It is often useful to insert in the ring special devices, wiggler

magnets, in order to increase the power emitted by SR and
reduce the damping times
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Wiggler Magnets

• A wiggler magnet is made of a series of dipole
magnets with alternating polarity so that the total
bending angle (i.e. the field integral along the
trajectory) is zero.

• This device can be inserted in a straight section of
the ring with minor adjustments of the optical
functions.

• The damping time becomes faster because U0
increases.

• Any number of periods can be added in order to get
the desired damping time.
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DAΦNE wiggler

Field and Trajectory
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Energy Oscillation Parameters for Various
Electron Storage Rings
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Quantum Excitation and Beam
Dimensions

Radiation damping is related to the continuous  loss
and replacement of energy.

Since the radiation is quantized, the statistical
fluctuations in the energy radiated per turn cause a
growth of the oscillation amplitudes.

The equilibrium distribution of the particles results
from the combined effect of quantum excitation and
radiation damping.
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Mean Square Energy Deviation
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2
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The invariant oscillation amplitude is

When a photon of energy u is emitted the change in A2 is:

and the total rate of change of A2:

The equilibrium is reached for dA2/dt = 0 and the
mean-square energy deviation is:
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N = n(u)du =
15 3

8!
P

u
c

Radiation Emission

The radiation is emitted in photons with energy
The total number of photons emitted per electron per second is:

n u( ) =
P

u
c

2

S u u
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u u
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And the mean square photon energy is:
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The mean photon energy is:
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Beam Energy Spread
• The energy deviation at a given time can be considered as the

sum of all the previous photon emissions, and all the energy gains
in the RF cavities.

• This sum contains a large number of statistically independent
small terms.

• Therefore, for the Central Limit Theorem, the distribution of
the energy deviation is Gaussian with standard deviation σε.
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Bunch Length

A Gaussian distribution in energy results in a similar
distribution in τ with standard deviation:

!" #
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= with

αc    momentum compaction, depends on lattice

Ω    synchrotron frequency

V0   RF peak voltage
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Beam Emittance
Horizontal plane

The betatron oscillation invariant is:
! 
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Change of off-energy orbit
and betatron amplitude in the
H plane due to energy loss
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Horizontal Emittance

The average rate of increase of A2 is:

Equating the excitation rate to the radiation damping
the equilibrium mean square value is obtained.

This defines the beam emittance εx:
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Emittance and beam sizes

The emittance is constant for a given lattice and energy.
The projection of the distribution on the x and x’ axis

respectively is Gaussian with rms :
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contribution of the synchrotron motion is added in quadrature
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Vertical Emittance
• Generally storage rings lie in the horizontal plane and have no

bending and no dispersion in the vertical plane.
• A very small vertical emittance arises from the fact that the

photons are emitted at a small angle with respect to the direction
of motion (θrms ≈ 1/γ)

• The resulting vertical equilibrium emittance is:

• This vertical emittance can be generally neglected.  For the ILC
DR 〈βz〉/ρ ~ 40/100 and εz ~ 8 10-14, which is 4% of the design
vertical emittance, not completely negligible
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Vertical Emittance

In practice a contribution to the vertical emittance can
come from:

•  coupling of horizontal and vertical betatron oscillations
due to:

– skew quadrupole field errors (angular errors in the quadrupole
alignment and vertical orbit in the sextupoles)

– errors in the compensation of detector
solenoids

• vertical dispersion due to:
– angular errors in the dipole alignment
– vertical orbit in the quadrupoles
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Vertical Emittance

0 < κ < 1

If the vertical emittance depends on a large number
of small errors randomly distributed along the ring, it
can be described in terms of a coupling coefficient κ

The sum of the horizontal and vertical emittances is
constant, often called “natural beam emittance”! 
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Effect of Damping Wigglers on εx

• We have already seen that insertion of wigglers in a ring
increases I2 and therefore the energy radiated per turn

• The main effect is a reduction of the damping times
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Effect of Damping Wigglers

• If Fw>>1 the arc emittance is reduced by the factor
Fw and the ring emittance is dominated by the wiggler

• Inserting the wigglers in a zero dispersion section
the wiggler emittance can be made very small

• Therefore insertion of wigglers allows to reduce both
the beam emittance and the damping time

• Wigglers are extensively used in damping rings: the
ILC DR has 200 m of wigglers

• Wigglers in dispersive sections are sometimes used
to increase the emittance in storage ring colliders

! 

"
x0

=
"
a

1+ F
w

+ "
w

F
w

1+ F
w



69

Summary of beam parameters related to the
synchrotron radiation integrals
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Lecture 5
Damping Ring Basics

Intrabeam Scattering

ILC Accelerator school



71

Intrabeam scattering
• Intrabeam scattering (IBS) is an elastic Coulomb

scattering between pairs of particles within a bunch.
• The particles perform betatron oscillations in a plane

perpendicular to the direction of motion
• Due to the scattering two particles can transform

their transverse momenta into longitudinal momenta.
• When making the transformation from the reference

frame moving with the bunch center of mass to the
laboratory frame the longitudinal momentum is
multiplied by the relativistic factor γ

• For highy relativistic particles (γ>>1) fraction of the
longitudinal momentum gain or lost in the collision may
be not negligible
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Touschek scattering

• If the new longitudinal momenta are outside the momentum
acceptance of the ring they get lost

• This effect is called Touschek scattering since it was observed
by Bruno Touschek at ADA the first prototype storage ring of
LNF

• This effect can give a strong lifetime limitation
• For damping rings lifetime can be of the order of minutes
• This is not an operational limitation since the beam has to be

stored  in the ring for a very short time (200 ms for ILC DR)
• It could be a limitation in the commissioning phase when beams

need to be stored to tune the ring parameters
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Intrabeam Scattering

• If the momentum of the particle after the
scattering is still inside the ring acceptance
the result is an additional momentum spread
in the bunch

• IBS can lead to growth in the transverse and
longitudinal emittances. This could prevent
achieving the very small beam sizes required
in DRs
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Calculation of Rise Times

• The theory of IBS has been derived by Piwinski and by Bjorken
and Mitingwa

• The change of momenta of two particles due to the collision is
calculated in the center of mass system of the two particles and
then transformed back to the laboratory

• It is calculated the change of the amplitude of betatron and
synchrotron oscillations

• Then it is taken the average over the scattering angles,
weigthed with the cross section, and over momenta and position
of the particles with Gaussian distribution
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Rise Times Formulae
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Intrabeam Scattering

• Beam emittances and energy spread result from the equilibrium
between radiation damping and IBS rise times

• Rise times have a strong energy dependence(τ p,x,z∝γ4)
• Rise times are proportional to the bunch density in phase space
• DR aim to ultra low emittances and high bunch charges and can be

affected by IBS emittances growth
• Possible Cures:
• Lattice design - keep Dx ≠ 0 in most of the ring and Dx=0 at the

extraction point. So σx=√(εβx+Dx
2σp

2) in most of the ring is larger than
at the extraction. This reduces bunch density and can reduce IBS in low
emittance lattices, where the invariant function H is  small

• Increase radiation damping - in fact the emittance results from the
equilibrium between radiation damping and IBS rise times.
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The growth from IBS is a function of the optics, and is strongly
dependent on the energy (BRU: E=3.74 GeV)

 All the lattices meet the specification on the horizontal emittance

Horizontal Emittance Growth From IBS in the
ILC DR Reference Lattices

Design
8µm

E= 5 GeV

Configuration Studies and Recommendations for the ILC Damping Rings
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The growth is calculated assuming that vertical dispersion and
betatron coupling contribute equally to the vertical emittance

Vertical Emittance Growth From IBS in the ILC
DR Reference Lattices

Design
20nm

E= 5 GeV

Configuration Studies and Recommendations for the ILC Damping Rings
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IBS at KEK-ATF

• The IBS effect is strongly dependent on the bunch
density, and therefore becomes important for ultra
low vertical emittance

• Experimental studies of IBS in electron storage rings
have been performed in the KEK-ATF, which has
achieved the lowest vertical emittance of any
operating storage ring

•  Calculations of the equilibrium emittances are in
good agreement with the experimental results.
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ATF with
wigglers

J. Urakawa, Wiggle05

• Horizontal beam size, bunch length and energy spread growth, due
to IBS, observed

• Reduction of damping time of emittance and of IBS effect is
observed with wigglers on

• Four wigglers (2m
long) were turned on

• Measured damping
times and emittances
found consistent with
calculations
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FODO Lattice

FODO cell

φx= φy= 94.5º

12 FODO cells
Qx = 3.15, Qz = 3.15

QF QFQD

βy

βx
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Thin Lens FODO Cell

In thin lens approximation and representing dipoles as
drift spaces the matrix of a FODO cell can be written as

! 

M =
1 0

"
1

2 f

1

# 

$ 

% 
% 

& 

' 

( 
( 

1 L

0 1

# 

$ 
% 

& 

' 
( 
1 0

1

f

1

# 

$ 

% 
% 

& 

' 

( 
( 

1 L

0 1

# 

$ 
% 

& 

' 
( 
1 0

"
1

2 f

1

# 

$ 

% 
% 

& 

' 

( 
( 

=

Comparing this with the matrix of a periodic structure evaluate
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